USING ATMOSPHERIC DATA
TO DETERMINE HOW WELL
A SEPARABLE ODE MODELS
THE VERTICAL MOTION OF A
DRY AIR PARCEL

CHRIS OEHRLEIN
OKLAHOMA CITY COMM. COLL.

#### **ODE FOR ENGINEERS**





#### POTENTIAL TEMPERATURE

Cool

Pressure  $p < p_0$ Potential temperature  $\theta$ 

Rises without gain/loss of heat



Warm
Pressure  $p_0$ Potential temperature  $\theta$ 



## 1<sup>ST</sup> LAW OF THERMODYNAMICS

$$dq = c_p dT - \alpha dp$$

- q: heat
- $c_p$ : specific heat
- $\alpha$ : inverse of density

With no gain or loss of heat:

$$\frac{dT}{dp} = \frac{\alpha}{c_p}$$

### **IDEAL GAS LAW**

$$p = \rho RT$$

- $\rho$ : density
- R: gas constant

Rewrite this as

$$\alpha = \frac{RT}{p}$$

# POTENTIAL TEMPERATURE ODE

Putting these together gives

$$\frac{dT}{dp} = \frac{R}{c_p} \frac{T}{p}.$$

• Solve with  $(p_0, \theta)$  as the pressure and temperature at the ground:

$$\theta = T \left(\frac{p_0}{p}\right)^{\frac{R}{c_p}}$$

#### THE ASSIGNMENT

Solve the Separable IVP

 Compare Model Potential Temps with Actual Calculations

Identify Issues

#### MY ROLE

PROVIDE DATA

INSTRUCTIONS/SYNTAX for R

• GUIDANCE ON SCATTERPLOT ISSUES

#### THE REALITY

- Is the ODE Separable?
- ALGEBRA!!!
- Oceanographic Data easier to access than Atmospheric Data
  - -No heat exchange means density change
  - Density not removed
  - –Scatterplot NOT LINEAR

#### THE FUTURE

- Convert .nc files
- Keep Oceanographic Data
- More ODE Class Time on Data Concepts
- Curriculum Change

#### Thank You

cdoehrlein@gmail.com