Introducing the Law of Large Numbers to Statistics Courses Through an Interactive Programming Activity

Patrick Stewart

Department of Mathematics Millersville University

August 4, 2023

900

Introduction	Fair Coin Activity	Die Activity	Conclusion
●OO		00000000	OO
т IZ: I			

- Two Kinds of Probability
 - Empirical Probability: The probability of an event A is the number of times A occurs divided by the number of repetitions, n.

• Theoretical Probability: The probability of the occurrence of an event that comes from a sample space of known equally favourable outcomes.

Introd	uction
000	

Two Kinds of Probability

Scenario

Suppose I flip a fair and balanced coin 10 times.

Introd	uction
000	

Two Kinds of Probability

Scenario

Suppose I flip a fair and balanced coin 10 times. I get the following sequence of flips:

H, T, H, H, T, H, H, T, H, H

What's the probability of heads?

• Empirical Probability:

Two Kinds of Probability

Scenario

Suppose I flip a fair and balanced coin 10 times. I get the following sequence of flips:

H, T, H, H, T, H, H, T, H, H

What's the probability of heads?

- Empirical Probability: We have seven heads out of ten flips. So, the probability of heads can be calculated as $P(H) = \frac{7}{10} = .7$
- Theoretical Probability:

Two Kinds of Probability

Scenario

Suppose I flip a fair and balanced coin 10 times. I get the following sequence of flips:

H, T, H, H, T, H, H, T, H, H

What's the probability of heads?

- Empirical Probability: We have seven heads out of ten flips. So, the probability of heads can be calculated as $P(H) = \frac{7}{10} = .7$
- Theoretical Probability: We have a fair and balanced coin. We can only have a Heads or a Tails. Thus, the probability of heads should be $P(H) = \frac{1}{2} = .5$

We don't get the same answer!

Conclusion

The Law of Large Numbers

There is a way to reconcile the empirical and theoretical probabilities.

Conclusion

The Law of Large Numbers

There is a way to reconcile the empirical and theoretical probabilities.

The Law of Large Numbers (LLN)

As the number of repetitions of a probability experiment increases, the proportion with which a certain outcome is observed gets closer to the probability of the outcome.

In other words, the empirical probability gets closer and closer to the theoretical probability as n increases!

Introd	uction
000	

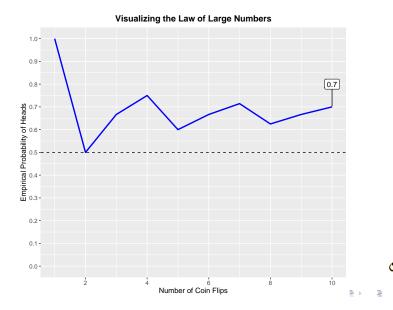
Setup

- We'll use the R programming language to visualize the LLN in action.
- Let's simulate a fair and balanced coin being flipped a number of times.
- What will happen to the empirical probability of a heads as *n* increases?

Introd	uction
000	

Setup

- We'll use the R programming language to visualize the LLN in action.
- Let's simulate a fair and balanced coin being flipped a number of times.
- What will happen to the empirical probability of a heads as *n* increases?
- Let's start with 10 flips. Earlier, we got the following sequence H, T, H, H, T, H, H, T, H, H.
- This leads to an empirical probability of .7.



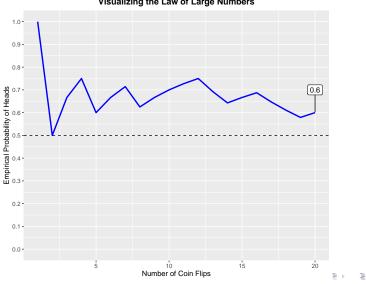
Fair Coin Activity

Die Activity

Conclusion

10 Flips

6 / 25

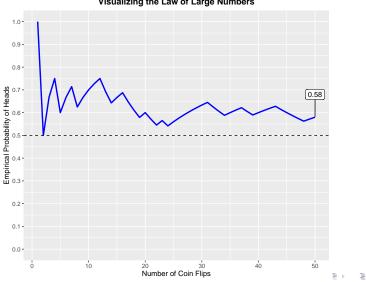

Fair Coin Activity

Die Activity

Conclusion

7 / 25

20 Flips



Introd	luction
000	

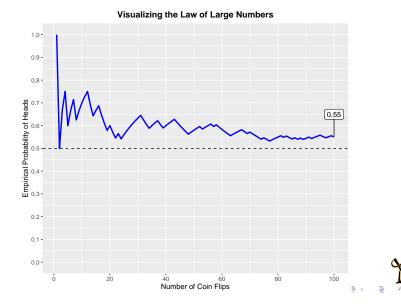
Die Activity

Conclusion

50 Flips

Visualizing the Law of Large Numbers

8 / 25

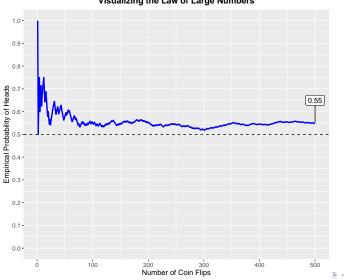

Fair Coin Activity

Die Activity

Conclusion

9 / 25

100 Flips

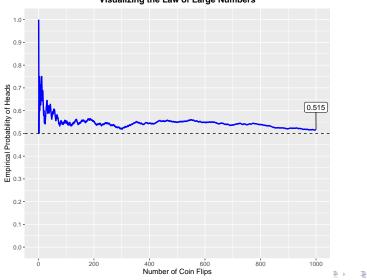

000		

Die Activity

æ

10 / 25

500 Flips

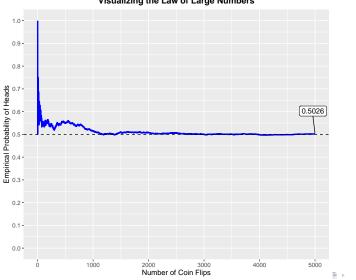

Int	roo	du	ct	io	n
00	20				

Die Activity

Conclusion

11 / 25

1000 Flips

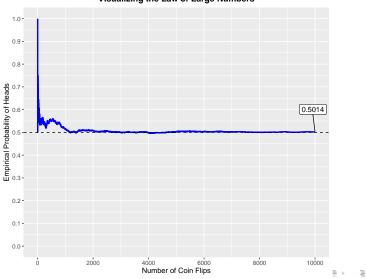

Int	roo	du	ct	io	n
00	20				

Die Activity

æ

12 / 25

5000 Flips

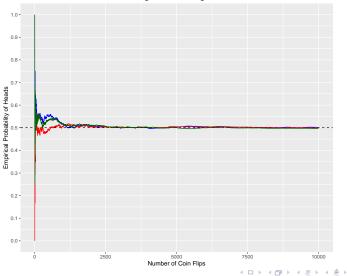


Introd	luction
000	

Die Activity

Conclusion

10,000 Flips



Visualizing the Law of Large Numbers

13 / 25

Conclusion

Multiple People

Introduction	Fair Coin Activity	Die Activity ●00000000	Conclusion
Setup			

• The Law of Large Numbers can be used for all sorts of fun applications. Let's have some fun simulating die rolls. Let's pretend we're playing Dungeons and Dragons. We'll roll a 20-sided die (D20) many times.

Introduction ೧೧೧	Fair Coin Activity	Die Activity •00000000	Conclusion
~			

Setup

- The Law of Large Numbers can be used for all sorts of fun applications. Let's have some fun simulating die rolls. Let's pretend we're playing Dungeons and Dragons. We'll roll a 20-sided die (D20) many times.
- Rolling a 1 is considered a critical failure. If a 1 shows up a lot more often than the other numbers, you're considered to have a cursed die. Personally, a 1 always seems to show up at the worst possible moments.

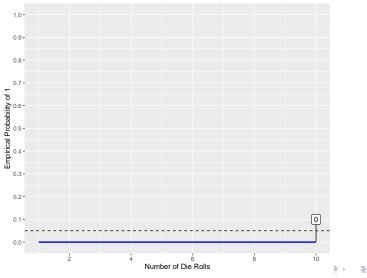
Introduction	Fair Coin Activity	Die Activity ©0000000	Conclusion
_			

- Setup
 - The Law of Large Numbers can be used for all sorts of fun applications. Let's have some fun simulating die rolls. Let's pretend we're playing Dungeons and Dragons. We'll roll a 20-sided die (D20) many times.
 - Rolling a 1 is considered a critical failure. If a 1 shows up a lot more often than the other numbers, you're considered to have a cursed die. Personally, a 1 always seems to show up at the worst possible moments.
 - Let's determine if we have a fair die or a cursed die by charting the empirical probability of rolling a 1. If we have a cursed die, let's try to determine the theoretical probability of rolling a 1 with our die. If we have a fair D20, then the probability of rolling a 1 will be $\frac{1}{20} = .05$.

<ロ> <回> <回> < 回> < 回> < 回>

ntroduction	Fair Coin Activity	Die Activity ©0000000	Conclusion OO
_			

- Setup
 - The Law of Large Numbers can be used for all sorts of fun applications. Let's have some fun simulating die rolls. Let's pretend we're playing Dungeons and Dragons. We'll roll a 20-sided die (D20) many times.
 - Rolling a 1 is considered a critical failure. If a 1 shows up a lot more often than the other numbers, you're considered to have a cursed die. Personally, a 1 always seems to show up at the worst possible moments.
 - Let's determine if we have a fair die or a cursed die by charting the empirical probability of rolling a 1. If we have a cursed die, let's try to determine the theoretical probability of rolling a 1 with our die. If we have a fair D20, then the probability of rolling a 1 will be $\frac{1}{20} = .05$.
 - How many rolls will it take us to pretty accurately determine this?

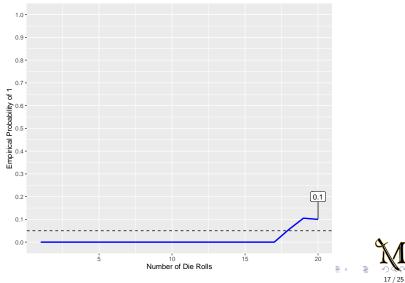

Fair Coin Activity

Die Activity

Conclusion

10 Rolls

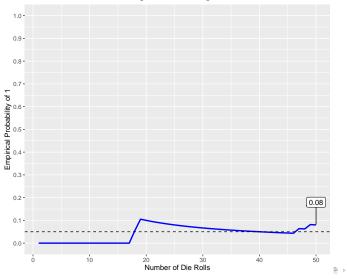
16 / 25


Fair Coin Activity

Die Activity

Conclusion

20 Rolls


50 Rolls

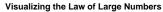
Fair Coin Activity

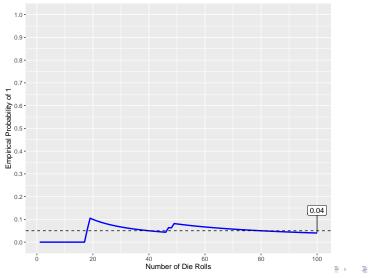
Die Activity

Conclusion

Visualizing the Law of Large Numbers

18/25

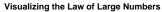

æ

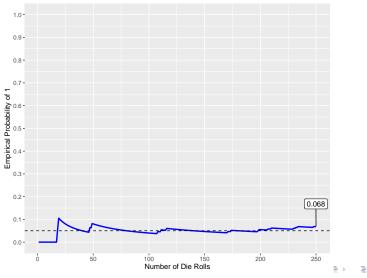

Fair Coin Activity

Die Activity

Conclusion

100 Rolls


19 / 25


Fair Coin Activity

Die Activity

Conclusion

250 Rolls

20 / 25

Fair Coin Activity

100

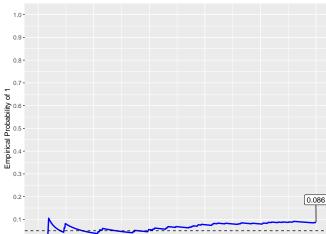
Die Activity

400

300

Number of Die Rolls

500


目と、目

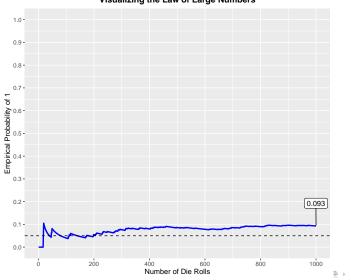
Conclusion

500 Rolls

0.0-

Ó

200


21/25

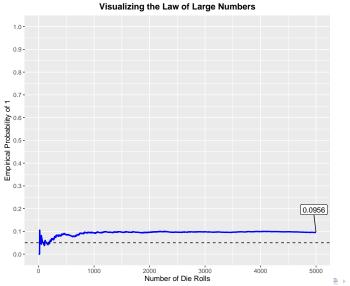
Fair Coin Activity

Die Activity

Conclusion

1000 Rolls

Visualizing the Law of Large Numbers


22 / 25

æ

Fair Coin Activity

Die Activity

5000 Rolls

23 / 25

æ

Activity in the Classroom

I show this activity to all of my statistics classes during the probability chapter.

We run through the activity together live as a class. The class determines the seed, how many flips to run through, etc. We then talk through what's happening as n increases.

Conclusion

Thank You!

